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1. e (the total momentum is conserved, not the velocity; the best way to
approach this is to recognize that we don’t even know the direction the
blocks will move. They will move toward the left after the collision if
block B’s momentum to the left is greater than block A’s momentum
toward the right; otherwise the blocks will move toward the right after
the collision.)

2. a (since the masses are the same, we can at least recognize that the
blocks will move toward the left after the collision; if they move at 5
m/s, then block A changes from 10 m/s right to 5 m/s left; that is the
same, but opposite, change as block B’s 20 m/s left to 5 m/s left)

3. d (the only way for the kinetic energy to be zero is if they are both
stationary; momentum can be zero if they are both zero or if each
momentum is equal in magnitude but opposite in direction)

4. a (The air rotates with the earth and, as it is pulled toward the center of
the hurricane, it spins faster in the same direction to conserve angular
momentum; this direction appears counter-clockwise in the northern
hemisphere)

5. (a) Yes. The forces are equal and opposite due to Newton’s third

law and the times are the same, so F⃗∆t exerted on one object
must be equal and opposite to F⃗∆t exerted on the other object.
From Newton’s second law, F⃗∆t = ∆p⃗, this means that p⃗ of one
object must be equal and opposite to p⃗ of the other (where p⃗ is
the momentum mv⃗).

(b) Kinetic energy may or may not be conserved. It is only conserved
if the collision is elastic. If it is not elastic, energy goes into de-
forming the object but we never get that energy back into kinetic
energy. Instead the energy goes into heat or some other kind of
energy.

(c) Yes, since the total amount of energy is always conserved. We just
have to make sure we keep track of all the different types.

6. (a) Apply conservation of energy, since direction of motion is not
needed and path is curved (which makes determining the nor-
mal force difficult). As the first block slides down the ramp, it
gains kinetic energy (i.e., it speeds up). Since there is no loss of
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energy from friction, the gain in kinetic energy must equal the
loss in gravitational energy. The change in gravitational energy is
mg∆sy, which equals (0.040 kg)(9.8 N/kg)(−1.00 m) or−0.392 J.

The negative means that gravitational energy was lost. In the
process, kinetic energy increases by the amount that gravitational
energy decreased. This means that the block gained 0.392 J of
kinetic energy. Since it started at rest, the block’s kinetic energy
at the bottom must be 0.392 J (if it didn’t start at rest, we’d have
to add the initial kinetic energy to this).

Since Ek =
1
2
mv2, one can solve for the block’s speed to get 4.427

m/s.

(b) Momentum is conserved. In this case, the momentum before the
collision is known. The first block is moving at 4.427 m/s. Mul-
tiply by its mass (0.040 kg) to get a momentum of 0.177 kg·m/s
toward the right. The initial momentum of the second block is
zero (since it is at rest prior to the collision). Thus, the total
momentum prior to the collision is 0.177 kg·m/s toward the right.

Since momentum is conserved, that must also be the total mo-
mentum just after the collision.

0.177 kg ·m/s = m1v1,f +m2v2,f

= (0.040 kg)v1,f + (0.070 kg)v2,f

Without more information, we cannot tell how much momentum
is associated with one block vs. the other. To get that, we use the
knowledge that the collision is elastic. That means that after the
collision block 2 must be moving 4.427 m/s faster than block 1
(since the difference in speed must equal the same as what it was
before the collision)i.

4.427 m/s = v2,f − v1,f .

Rearranging the momentum equation to solve for v1,f (the variable
we don’t really need and thus want to get rid of), we get

v1,f =
0.177 kg ·m/s− (0.070 kg)v2,f

(0.040 kg)

iThis also means that the kinetic energy is conserved but using the definition of kinetic
energy just makes for messy math.
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and plugging that into the second equation, we get

4.427 m/s = v2,f −
0.177 kg ·m/s− (0.070 kg)v2,f

(0.040 kg)

= v2,f

[
1 +

0.070 kg

0.040 kg

]
−

[
0.177 kg ·m/s

0.040 kg

]
= 2.75v2,f − 4.427 m/s

which gives us a final speed of block 2 of 3.220 m/s.

Note: Since we know the relative velocity is 4.427 m/s, that means
that block 1 (after the collision) must be moving back toward the
left at (4.427 m/s − 3.220 m/s) or 1.207 m/s. However, we aren’t
asked for that.

(c) Since block 2 has a speed of 3.220 m/s, its kinetic energy is

Ek = 1
2
mv2

= 1
2
(0.070 kg)(3.220 m/s)2

= 0.363 J

Note: If you calculate the kinetic energy of the first block after the
collision, you’ll find that the rest of the kinetic energy is associated
with that block (since the collision is elastic).

(d) To get over the second ramp, the second block must have a ki-
netic energy greater than or equal to the change in gravitational
energy as it rises over the second hill. The change in gravitational
energy is mg∆y, which equals (0.070 kg)(9.8 N/kg)(−0.50 m) or
−0.343 J. Consequently, block 2 needs to have a kinetic energy
greater than or equal to 0.343 J immediately after the collision in
order to make it over the second hill.

From part (c), we know that the second block initially has a kinetic
energy equal to 0.363 J. Since this is greater than 0.343 J, it will
make it over the hill.

7. (a) The student should throw the shoe away from shore. That requires
that the student exerts a force directed away from shore on the
shoe. Due to Newton’s third law, the shoe would exert an opposite
force on the student, pushing the student toward shore.
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(b) From the definition of momentum, the shoe obtains a momentum
of mv equal to (1 kg)(20 m/s), which is 20 kg m/s away from
shore. Due to conservation of momentum, the student must gain
an equal amount but in the opposite direction. That means the
student’s mv must equal 20 kg m/s toward shore. Divide by the
mass of the student (60 kg) to get the velocity of the student (0.33
m/s toward shore).


